联系人:孙经理
手 机:18653459381
电 话:400 178 6369
地 址:山东省德州市禹城市西外环南
首汇丰物流公司北200米路东
(山东分公司)
地 址:辽宁省大连市旅顺口区顺乐街329-1号
化学肥料的不合理施用导致土壤有机质含量下降,板结等一系列土壤问题。增施农家肥可有效改善土壤的理化性质,缓解化肥对土壤的破坏。但由于农家肥具有结块、含水率高、施肥量大的缺点,施肥过程中又存在装肥、运肥繁杂,作业强度大,人工撒施不均匀等问题,所以农家肥的施用受到很大的限制。农家肥施肥机械化可以很好的解决上述问题,但机械化施肥又存在着以下两方面问题:一是现有的农家肥抛撒机械多从国外引进,功能繁杂、价格昂贵,国内推广难度大;二是国内生产的农家肥抛撒机械以仿制为主,对农家肥抛撒机技术缺乏深入研究,施肥效果不理想。这些问题严重阻碍了农家肥的大面积使用。针对以上问题,研制了一种新型的农家肥抛撒机,该抛肥车为牵引式,由地轮驱动输肥、拖拉机动力输出轴驱动抛撒。为探究各试验因素对抛肥车现货抛撒性能的影响,以均匀度变异系数和撒肥幅宽为试验指标,进行了单因素和正交试验,进而得到各因素的主次顺序和较优参数组合。
针对目前大多数在作业过程中存在抛撒不均问题,该文设计了一种锥盘式撒肥装置。通过对该装置结构和工作原理的阐述及肥料颗粒在撒肥盘、叶片上和空气中的动力学和运动学分析,建立了肥料颗粒的运动模型。以叶片长度、叶片水平投影倾角、撒肥盘转速、肥箱落肥口位置和面积为试验因素,以肥料抛撒的横向变异系数为试验指标进行了台架试验。试验表明,当落肥口位置(落肥口中心点在以叶片旋转中心在地面的投影为坐标原点的空间直角坐标系中的坐标值)为(70 mm,0,800 mm),叶片长度为150 mm,落肥口面积为2456 mm2,叶片水平投影倾角为1°,撒肥盘转速为1090 r/min时,横向撒肥变异系数为5.215%,此时肥料抛撒的均匀性最好,满足施肥作业要求。该基本上解决了肥料抛撒不均方面的不足,为锥盘式撒肥机的设计与优化提供了参考。
针对畜禽粪便、农家肥等腐熟有机肥特点,结合施用要求,设计了有机肥抛撒机,该机主要由万向节传动轴、齿轮传动系统、机架、肥箱、螺旋输送破碎系统、液压缸、卸料门、变速箱、带传动装置、抛撒系统等组成,并针对机箱、推肥破碎装置、抛撒装置进行了主要设计.经过试验证明,该机器实现了肥料均匀高效抛撒,具有宽幅作业,窄幅运输功能;箱体T形结构设计,实现了装料方便,卸料充分,无残留;整机结构紧凑,性能可靠,行走、转动灵活,操作简单,控制方便.
在罗马时代,农民就发现在前作为豆科植物的大田里种植谷类作物时,其产量有所提高,因此,就注意到细菌能增富农业土壤中的营养。直至19世纪,德国的苜蓿种植者和美国的一些大豆种植者,他们利用苜蓿田或大豆田的土壤,转移接种至新的农田,从而使作物产量得到提高。1838年,法国农业化学家布森高(J.B.Boussingault)发现了豆科植物能固定氮。并于1843年建立了第一个农业试验站,对各种轮作制中作物产量和成分进行了较为精确的分析。1886-1888年德国科学家赫尔里格尔(H.Hellriegal)在砂培条件下证明,豆科植物只有形成根瘤菌才能固定大气中的氮。1888年荷兰学者贝叶林克(M.W.Beijerinck)分离了根瘤菌,这是微生物肥料方面的突破。现已明确那是根瘤菌的作用。这些细菌的发现,促使了第一家美国公司纳特尔公司于1898年生产和销售了土壤细菌接种剂。自此以后,就有诸多的细菌制剂用于土壤和农作物种子的拌种和包衣。
通过抛撒模型,在施肥过程中对不同圆盘转速进行了试验,并通过试验在横向和纵向施肥距离上,从不同的角度绘制了曲线图,进行比较得出了施肥的均匀性随着圆盘转速的减低而减低,其有效施肥幅宽也随其减小。同时,找到了达到试验所用的3种肥料的极限速度的圆盘转速,得出圆盘转速在高于极限速度时变化,施肥曲线图变化不明显;而低于极限速度时,施肥曲线变化明显。[目的]为了研究的抛撒性能.[方法]在自制的圆盘式有机肥撒肥器试验台上进行了影响撒肥均匀度的单因素和正交试验测试.[结果]单因素试验结果表明,采用安装2组偏心叶片的圆盘、两盘安装中心距750 mm时撒肥均匀度的平均偏差最小.随着两圆盘转速的增大,撒肥均匀度平均偏差快速减小,转速超过200 r/min平均偏差变化程度非常小;正交试验结果表明,采用2组偏心叶片的圆盘、两盘安装中心距750 mm,圆盘转速200 r/min时撒肥均匀度的平均偏差最小.[结论]所设计的撒肥器具有撒肥均匀、工作效率高的特性,这为有机肥撒施机的研发提供了参考。
臭气熏天、污水横流、蚊蝇成群……这是大部分人对畜禽养殖场的印象。但是在安徽省阜阳市颍上县庆丰农牧发展有限公司五十里铺村种养基地,却是另一番景象。案例:他们养殖1.5万头生猪,确感觉不到一点异味,经企业人介绍我们得知其中的缘由,他们运用“种养结合、资源循环、生态发展”的现代畜牧业发展新模式。猪舍的粪污通过管道排到蓄粪池中,经过干湿分离并发酵后,沼气发电用于猪场用电及饮料加工,粪水则在厌氧池中发酵成沼液肥,再与一定比例的水进行搭配稀释,通过地下管网,为种养基地农田供肥,固体则可直接用于还田或加工成有机肥。